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Abstract

The small size of nanoparticles (NPs), with dimensions between 1 and 100 nm, results in unique chemical and physical
characteristics, which is why they are implemented in various consumer products. Therefore, an important concern is the
potential detrimental impact of NPs on the environment. As plants are a vital part of ecosystem, investigation of the phytotoxic
effects of NPs is particularly interesting. This study investigated the potential phytotoxicity of silver nanoparticles (AgNPs) on
tobacco (Nicotiana tabacum) plants and compared it with the effects of the same AgNO; concentrations. Accumulation of silver
in roots and leaves was equally efficient after both AgNP and AgNO; treatment, with predominant Ag levels found in the roots.
Exposure to AgNPs did not result in elevated values of oxidative stress parameters either in roots or in leaves, while AgNO;
induced oxidative stress in both plant tissues. In the presence of both AgNPs and AgNOs, root meristem cells became highly
vacuolated, which indicates that vacuoles might be the primary storage target for accumulated Ag. Direct AgNP uptake by root
cells was confirmed. Leaf ultrastructural studies revealed changes mainly in the size of chloroplasts of AgNP-treated and AgNO5-
treated plants. All of these findings indicate that nano form of silver is less toxic to tobacco plants than silver ions.

Keywords Silver nanoparticles - Nicotiana tabacum - Oxidative stress - Comet assay - Antioxidant enzymes - Ultrastructure

Introduction products for wide application (Benn et al. 2010). The increas-
ing production and exploitation of NPs raises important con-
cerns regarding their release to water, soil, and air (Peralta-
Videa et al. 2011) and therefore possibly a harmful effect on
the environment and, consequently, human health (Maynard

etal. 2011; Beer et al. 2012; Colman et al. 2013).

Nanoparticles (NPs) are defined as structures that have at least
one dimension between 1 and 100 nm, which results in their
unique chemical and physical characteristics. These unique
features make them highly attractive for implementation in
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Among the different available NPs, silver nanoparticles
(AgNPs) are the most widely applied due to their well-
known antibacterial and antifungal effects, as well as their
plasmonic and opto-electrical properties (Pokhrel et al.
2012). Studies performed in a variety of organisms indicate
AgNP toxicity, which may be ascribed to different mecha-
nisms, including the disruption of the integrity of the cell
membrane (Suresh et al. 2010), damage and binding of the
proteins and/or DNA (Arora et al. 2009; Domazet JuraSin
et al. 2016), and formation of reactive oxygen species (ROS)
(Hsin et al. 2008; Vinkovi¢ Vréek et al. 2016).

The potential ways for terrestrial plants to be exposed
to AgNPs are possible leaching from nano-enabled prod-
ucts (Pirela et al. 2015), intentional sub-surface release for
environmental remediation (Tran et al. 2013), irrigation
using contaminated surface water (Pokhrel and Dubey
2013), land applications of contaminated biosolids
(Colman et al. 2013), or waste water effluent discharge
(Farkas et al. 2011). As plants are primary producers
and a vital part of ecosystem, the phytotoxic effects of
NPs should be given particular attention in future studies.
Toxicological studies that investigated the impact of
AgNPs on plants suggest their uptake, accumulation, and
translocation in different plant organs and thus conse-
quences on growth and development processes (Yin
et al. 2012; Dimkpa et al. 2013; Vinkovi¢ et al. 2017;
Cvjetko et al. 2017). Moreover, evaluations of oxidative
damage to lipids, proteins, and DNA molecule as well as
changes in the activity of plant hormones or antioxidant
enzymes in plants treated with AgNPs (Dimkpa et al.
2013; Mirzajani et al. 2013; Yasur and Rani 2013;
Vinkovi¢ et al. 2017; Cvjetko et al. 2017) suggest that
oxidative stress could have an important role in the phy-
totoxicity of AgNPs. Therefore, it is important to increase
our knowledge about mechanisms of AgNP toxicity to
ensure a controlled and safe implementation of AgNPs
in a variety of agricultural products.

In this study, we investigated the potential phytotoxicity
of citrate-coated AgNPs on an important crop plant, tobacco
(Nicotiana tabacum L.), which is also a commonly used
model organism in the research of abiotic stress (Gichner
et al. 2004; Garnier et al. 2006; Peharec Stefanié et al.
2012; Tkalec et al. 2014). Adult tobacco plants were simul-
taneously exposed to the same concentrations of citrate-
coated AgNPs and AgNO;. Comparison of phytotoxic ef-
fects was performed for AgNP-exposed and AgNOs-ex-
posed plants due to the dissolution behavior of AgNPs
(Lowry et al. 2012), and therefore, their toxicity is often
related to the released Ag"™ (Kawata et al. 2009; Kim et al.
2009; Vinkovi¢ Vréek et al. 2016; Vinkovié et al. 2017).
Roots and leaves were analyzed separately to obtain infor-
mation on silver uptake, induction of oxidative stress, as
well as ultrastructural changes in plant tissue.
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Materials and methods

Synthesis, characterization, and stability evaluation
of AgNPs

AgNPs coated with citrate were prepared by reduction of
AgNO; with sodium citrate as reported previously (Mili¢
et al. 2015; Cvjetko et al. 2017). Purification of freshly pre-
pared AgNP suspensions was performed immediately after
synthesis by two washing steps with Milli-Q® (Millipore,
18.2 M2 cm resistivity) water using 20-min centrifugation
at 15,790xg, after which AgNPs were resuspended in Milli-
Q® water and stored at 4 °C protected from light until use.

The physicochemical characteristics and stability of
AgNPs were evaluated using a UV-Vis spectrophotometer
(CARY 300, Varian Inc., Australia), Zetasizer Nano ZS
(Malvern, UK), and a monochromated TF20 (FEI Tecnai
G2) transmission electron microscope (TEM) as described
by Cvjetko et al. (2017). For determination of the possible
silver dissolution in Milli-Q® water, AgNP suspension was
ultrafiltrated through Millipore Amicon Ultra-4 3K mem-
branes. Total silver concentration in the AgNP suspension
and the filtrates was determined in acidified solutions (10%
v/v HNO;) using an Agilent Technologies 7500cx inductively
coupled plasma mass spectrometer (ICP-MS) (Agilent,
Waldbronn, Germany). Furthermore, the 2 uL of AgNP stock
solution was pipetted on a Formvar®/Carbon copper grid, air-
dried, and examined by TEM.

Plant material and culture treatments

For this experiment, the Nicotiana tabacum L. cv Burley was
used as a model plant. Plant material was cultivated as previ-
ously described (Peharec Stefani¢ et al. 2012; Tkalec et al.
2014). Briefly, seeds were surface sterilized with 50% (v/v)
sodium hypochlorite and thoroughly washed with deH,O. For
seed germination and plant growth, 300-mL Erlenmeyer
flasks were filled with 50-mL of Murashige and Skoog
(1962) nutrient medium supplemented with 500 mg L™
MES [2-(N-morpholino)ethanesulfonic acid], 1.5 g L™" su-
crose, and 2.2 g L™ Phytagel (pH 5.6) (Gichner et al. 1999).
Two tobacco seeds were placed on the surface of the culture
medium in each of the 100 flasks and left to germinate (ap-
proximately 5 days). Germinated seeds were grown for
2 months in the same Erlenmeyer flask in the conditions of
the growth chamber (16/8 light/dark cycle, light intensity of
90 mE m 2 sﬁl, and temperature of 24 °C) in order to obtain
adult plants with a fully developed root system and shoots
with differentiated leaves. For exposure to silver applied in
either nanoparticle (AgNP) or ionic (AgNO;) form, plants of
similar size (six plants per each treatment and control) were
transferred to the Milli-Q® water supplemented with either
AgNPs or AgNOs applied in the following concentrations:
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25, 50, 75, 100, or 500 uM. Control plants were cultured in
Milli-Q® water devoid of silver. Plants were exposed to treat-
ment for 7 days. Leaves and roots were analyzed separately.
Experiments were performed in three biological replicates,
each with six technical replicates.

Determination of Ag content

In order to remove the AgNPs that adhered to root tissue, roots
of adult plants were washed with 0.01 M HNO; and rinsed
with ultrapure Milli-Q® water. Roots and leaves were dried in
a microwave oven for 24 h at 80 °C until constant weight was
obtained. The tissue was powdered using mortar and pestle
and acid digested with a mixture of 65% HNO; and 37%
H,0, (ratio 3:1, respectively) in a microwave oven (ETHOS
SEL Milestone, Shelton, CT, USA) according to the EPA
3051a method. The samples were cooled and subsequently
diluted with 1% (v/v) HNOj; until a final volume of 50 mL
was obtained. For determination of the total Ag concentration,
an ELAN DRC-¢ ICP-MS (PerkinElmer, USA) instrument
was applied. The calibration curve obtained with a set of stan-
dards of known concentrations was used to calculate the silver
concentration. The detection limit and limit of quantification
(LOQ) were 0.05 and 0.1 mg kg ', respectively. Spike recov-
ery tests were 95.2 and 95.6% for leaves of AgNP-treated and
AgNOs-treated plants, respectively, and 96.6 and 96.8% for
roots of AgNP-treated and AgNO;-treated plants,
respectively.

ROS determination

ROS level was determined by fluorescence microscopy by
application of fluorescent dye dihydroethidium (DHE) as
described previously (Cvjetko et al. 2017). After the treat-
ment with AgNPs, roots were thoroughly washed with
water and subsequently incubated at room temperature
in the dark for 30 min in 10 uM DHE solution. Leaf
fragments were taken from the exposed plants and incu-
bated in 10 uM DHE solution under the same conditions
as described for the roots. Afterwards, the tissue was thor-
oughly washed, transferred to the microscopic slides, and
analyzed with Olympus BX-51 (Olympus, Tokyo, Japan)
fluorescence microscope coupled to the high-resolution
camera Olympus DP70 (Olympus, Tokyo, Japan).
Excitation wavelengths were 450-490 nm, and emission
wavelengths were 520 nm or more. The obtained images
were analyzed for fluorescence intensity with computer
software Lucida 6.0 (Wirral, UK) by manually marking
regions of interest (ROI) in 100 randomly chosen cells
per treatment. The presented results are expressed accord-
ing to the relative intensity compared to control tobacco
roots or leaves.

Protein extraction

Proteins were extracted by grinding 200 mg of leaves and
400 mg of roots (all fresh tissue) in 1 mL of 50 mM potassium
phosphate buffer, pH 7.0. The 50 mg of insoluble polyvinyl-
pyrrolidone (PVP) was added to the plant material prior to
grinding. The homogenates were centrifuged for 15 min at
20,000xg at 4 °C, after which supernatants were collected
and re-centrifuged for 60 min at 20,000xg at 4 °C. Protein
concentration was measured according to the Bradford
(1976) method. Bovine serum albumin was used as a stan-
dard. These supernatants were subsequently used for carbonyl
quantification and assays of enzymatic activity.

Malondialdehyde and protein carbonyl content

The lipid peroxidation level was determined by measuring the
content of malondialdehyde (MDA), according to the modi-
fied method of Heath and Packer (1968). A total of 200 mg of
fresh leaves and 400 mg of fresh roots were homogenized in
1.3 mL of 0.3% (w/v) 2-thiobarbituric acid (TBA) prepared in
10% (w/v) trichloroacetic acid (TCA), and incubated at 95 °C
for 30 min. The cooled mixtures were then centrifuged for 1 h
at 20,000xg and +4 °C. The absorbance of the supernatant
was measured at 532 nm. For correction of nonspecific tur-
bidity, subtraction of the absorbance recorded 600 nm was
done. For calculation of lipid peroxide content, a molar ab-
sorption coefficient for MDA (155 mM ' cm ') was used and
the content was expressed as micromole per gram of fresh
weight.

The reaction with 2,4-dinitrophenylhydrazine (DNPH) was
used for protein carbonyl quantification according to Levine
et al. (1990). A total of 200 pL of protein supernatants was
combined with 300 pL of 10 mM DNPH in 2 M HCI and
incubated for 1 h at room temperature protected from light.
Afterwards, the proteins were precipitated with 500 pL of cold
10% (w/v) TCA. Samples were cooled at —20 °C and then
centrifuged for 10 min at 20,000xg and +4 °C. In order to
remove excess reagent, the pellets were washed with 500 pL
of ethanol/ethylacetate (1/1 v/v) three times. The precipitated
proteins were dissolved in 6 M urea in 20 mM potassium
phosphate buffer (pH 2.4) in an ultrasonic bath. Absorbance
was measured at 370 nm. For protein recovery estimation, the
absorbance of each sample was measured at 280 nm. Protein
carbonyl content was calculated using a molar absorption co-
efficient for aliphatic hydrazones of 22 mM ' ¢cm ' and
expressed as micromole per milligram of proteins.

Comet assay
The Comet assay was performed according to Gichner et al.

(2004) with previously published modifications (Balen et al.
2011; Cyvjetko et al. 2017). Briefly explained, after the
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mechanical isolation of nuclei in 400 mM Tris-HCI (pH 7.5) at
4 °C, they were mixed in equal volumes (50 uL) with low
melting point agarose (LMP, 1% (w/v)). After 10 min of de-
naturation (for DNA unwinding) and 20 min of electrophore-
sis at 0.8 V cm ™' and 300 mA in the freshly prepared buffer
(1 mM Na,EDTA and 300 mM NaOH, pH 13), slides were
neutralized, air-dried, and subsequently stained with 70 mL
ethidium bromide (20 mg mL ") for 5 min. A computerized
image analysis system (Komet version 5, Kinetic Imaging
Ltd., Liverpool, UK) was used to measure the tail DNA per-
centage (% tDNA) as the primary measure of DNA damage.

Assays of enzymatic activities

All enzymatic assays were done at 25 °C, and all spectropho-
tometric analyses were conducted in a UV/visible spectrome-
ter (ATT UNICAM UV4, Cambridge, UK).

Superoxide dismutase (SOD, E.C. 1.15.1.1) activity was
determined by following the method of Beauchamp and
Fridovich (1971). The reaction mixture was composed out
of 13 mM methionine, 75 uM nitroblue tetrazolium (NBT),
0.1 M EDTA, and 2 mM riboflavin supplemented with differ-
ent volumes of enzyme extracts in 50 mM phosphate buffer
(pH 7.8). All mixtures were kept for 8 minina 15 W light box,
after which the formazan formation produced by NBT photo
reduction was read at 560 nm. One unit of SOD activity was
defined as the amount of enzyme required to generate 50%
inhibition of the NBT reduction rate. Activity was expressed
as units of SOD activity per milligram of protein.

Pyrogallol peroxidase (PPX, E.C. 1.11.1.7) activity was
evaluated by measuring the absorbance increase at 430 nm
as a result of the pyrogallol oxidation (€=2.6 mM ' cm ™),
by following the method of Nakano and Asada (1981). The
reaction mixture was composed out of 50 mM potassium
phosphate buffer (pH 7.0), 20 mM pyrogallol, and 1 mM
H,0,, to which 20 uL of enzyme extract was added. The
activity of PPX was calculated as micromole of purpurogallin
(product of pyrogallol oxidation) per minute per milligram of
protein.

For ascorbate peroxidase (APX, E.C. 1.11.1.11) activity,
the decrease in absorbance at 290 nm (€=2.8 mM ' cm™ )
was estimated (Nakano and Asada 1981). The reaction mix-
ture contained 50 mM potassium phosphate buffer (pH 7.0),
0.1 mM ascorbate, and 0.12 mM H,0,, supplemented with
180 mL of enzyme extract. The activity of APX was
expressed as micromole of ascorbate oxidized per minute
per milligram of protein.

Catalase (CAT, E.C. 1.11.1.6) activity was determined by
measuring the decrease in absorbance at 240 nm (€=
36 mM ' cm™") every 10 s during 2 min, as described by
Aebi (1984). The reaction mixture was composed of 50 mM
potassium phosphate buffer (pH 7.0) and 10 mM H,O,, to
which 50 pL of enzyme extract was added. CAT activity
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was calculated as micromole of decomposed H,O, per minute
per milligram of protein.

Microscopic analyses

For localization of AgNPs in plant cells and ultrastructural
analyses of 100 pM AgNPs and 100 uM AgNOj3-treated to-
bacco plants, small pieces of tobacco tissue (root and leaf)
were fixed with 1% (w/v) glutaraldehyde in 50 mM cacodylate
buffer (pH 7.2) for 1 h at +4 °C, washed twice with cold
50 mM cacodylate buffer (pH 7.2) and post-fixed with 1%
(w/v) osmium tetroxide in the same buffer for 1 h at +4 °C,
followed by a 10-min wash in ice-cold water. After dehydra-
tion in a graded series of ethanol, the tissue was embedded in
Spurr’s resin. Semi-thin sections of fixed material were
stained with mixture of 2% (w/v) toluidine blue and 2% (w/
v) borax and examined using a light microscope. Ultrathin
sections were stained with 2% (w/v) uranyl acetate and 2%
(w/v) lead citrate and examined using a FEI Morgagni 268D
electron microscope for ultrastructural study and
monochromated TF20 (FEI Tecnai G2) TEM for confirmation
of AgNP localization in the tobacco cells.

Statistical analysis

All results represent the mean values + standard errors (SE) of
three biological replicates, each with six technical replicates.
The results of each assay were compared by analysis of vari-
ance (ANOVA), followed by Duncan test using the
STATISTICA 12.0 (Stat Soft Inc., USA) software package.
Differences among means were considered statistically signif-
icant at p <0.05.

Results
Characterization and stability evaluation of AgNPs

Characterization of purified citrate-coated AgNPs was per-
formed in Milli-Q® water using the UV-Vis spectroscopy,
TEM, dynamic light scattering (DLS), and electrophoretic
light scattering (ELS). The position of the SPR peak at
415 nm in UV-Vis spectra confirmed the nanosized dispersion
in Milli-Q® water for citrate-coated AgNPs. DLS measure-
ments showed bimodal volume size distribution where the
larger AgNP population (~80%) had a size of 61.2 +
33.9 nm and the smaller (~20%) was characterized by 13.8
+4.9 nm in size. The recorded TEM micrographs were in
accordance with DLS data revealing the presence of spherical
and rod-like AgNPs (Fig. 1a). Electron dispersive X-ray
(EDX) analysis confirmed that all of the detected particles
contained silver (Fig. 1b, c¢). The C potential measurements
revealed a negative surface charge of citrate-coated AgNPs
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Fig. 1 Citrate-coated AgNPs
investigated by transmission
electron microscopy. a TEM
image. b Bright field image. ¢
Energy-dispersive X-ray
spectrum
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characterized by a ( potential value of —39.8 £3.4 mV. This
value indicates strong electrostatic stabilization of the AgNPs
through the ionization of the polar citrate carboxyl groups on
the surface. Determination of silver dissolution in Milli-Q®
water showed a level of free Ag" in AgNP suspension lower
than 0.5%.

Silver uptake

Roots of tobacco plants exposed to either AgNPs or AgNO;
exhibited a significant increase in Ag uptake, which was of
similar values at corresponding AgNP and AgNO; concentra-
tions. Ag accumulation elevated linearly with the increase of
the applied concentration in both types of treatments, although
there was no significant difference between the treatments.
Exposure to the 500 uM AgNPs resulted with the highest
value, which however did not significantly differ compared
to the corresponding AgNO; treatment (Table 1).

Ag uptake in leaf tissue was significantly lower (100 to 30
times for AgNP treatments and 70 to 30 times for AgNO;
treatments) compared to roots, although a similar pattern

1.5 2.0 2.5 3.0 3.5 4.0 45 5.0

kev

was obtained. Ag accumulation linearly increased after expo-
sure to either AgNPs or AgNO3, and it was not significantly
different between corresponding AgNPs and AgNO; treat-
ments. Significantly, the highest values were recorded in
leaves of plants treated with the highest concentration
(500 uM) of both AgNPs and AgNO; (Table 1).

In situ ROS formation

Among the applied AgNP and AgNO; treatments, only expo-
sure to 100 and 500 uM AgNO; resulted with significantly
higher ROS formation compared to the control in root tissue
(Table 2), while similar values to control were obtained in
leaves in all of the treatments (Table 3).

Effect on lipid peroxidation
In root tissue, no significant difference in MDA content was
observed in AgNP treatments compared to control (Table 2).

A significant increase in lipid peroxidation level was detected
in roots of plant exposed to the majority of AgNOs; treatments,

@ Springer
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Table 1 Silver content (mg g’

DW) in roots and leaves of Treatment Roots Leaves

tobacco plants after treatment

with AgNP and AgNO; AgNP AgNOs AgNP AgNO;
Control <0.0001a <0.0001a <0.0001a <0.0001a
25 uM 1.247+122.01b 1.121+£136.24b 0.012+0.002b 0.018 +0.004b
50 uM 1.395+351.54b 1.450 +£436.16b 0.014+0.002b 0.021+0.007b
75 uM 1.712+ 80.86bc 1.741 +£134.45bc 0.019+0.001b 0.023 +0.004b
100 uM 1.742+192.87bc 1.747 +150.02bc 0.036+0.003¢ 0.038 +0.005¢
500 uM 2.480+141.97d 2.399 +310.64cd 0.079 +£0.005d 0.082+0.004d

Values are the means + SE of three biological replicates, each with six technical replicas. If values are marked with
different letters, the means are significantly different (p <0.05) according to Duncan test. In control samples, Ag
was detected below the instrument’s limit of quantification (LOQ < 0.0001 mg g ")

in comparison to the control tissue. Higher MDA content was
found in all AgNOj; treatments compared to the corresponding
AgNP treatments, although at 25 and 500 uM, the values were
not significantly different (Table 2).

In leaves, significantly elevated MDA content compared to
the control was found only in plants exposed to the highest
(500 uM) AgNP concentration, while AgNO; induced it at
100 and 500 uM (Table 3). Higher MDA content in AgNO;
treatment than in the corresponding AgNPs treatment was
found at 100 uM (Table 3).

Effect on protein oxidation

Exposure to AgNPs did not induce a difference in protein
carbonyl content in root tissue after exposure to any of the
applied concentrations in comparison to control plants
(Table 2). On the contrary, the carbonyl content was signifi-
cantly increased after exposure to AgNO; compared to control
as well as corresponding AgNP treatments, starting from the
lowest applied concentration (25 uM) (Table 2).

In leaf tissue, AgNP treatments did not significantly in-
crease protein carbonyl content, while exposure to AgNO;
resulted with significantly elevated carbonyl content com-
pared to the control in all of the treatments with the exception
of the lowest applied concentration (25 uM) (Table 3).
However, there were no differences between AgNO3 and
AgNP treatments.

Effect on DNA

None of the applied AgNP concentrations induced increased
DNA tail in roots of the adult plants compared to the control
(Table 2). On the contrary, AgNOs treatments induced signif-
icant DNA damage in root tissue at all of the applied concen-
trations (Table 2).

As for the leaves, among the investigated treatments, only
100 and 500 uM AgNO; induced a significant increase in
DNA tail compared to the control value (Table 3).
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Effect on antioxidant enzyme activity

In root tissue, AgNP treatments did not induce significant
changes in SOD activity compared to the control, even though
after exposure to 100 and 500 uM, lower values were obtained
(Table 2). AgNO; applied at 25, 50, and 75 pM resulted with
higher values, although after the treatment with 75 uM
AgNO;, it was not statistically different compared to the con-
trol. At 25 and 50 uM, SOD activities in AgNOj3-treated
plants were higher than in the corresponding AgNP treatments
(Table 2). In leaves of plants exposed to either AgNPs or
AgNO;, no significant changes in SOD activity were mea-
sured in any of the tested concentrations (Table 3).

None of the applied AgNP concentrations induced changes
in PPX activity in root tissue compared to the control
(Table 2). On the contrary, all of the applied AgNO3 concen-
trations significantly induced PPX activity compared to the
control as well as to the corresponding AgNP concentrations
(Table 2). In leaf tissue, AgNP treatments reduced the PPX
activity when applied at the highest concentrations (100 and
500 uM) compared to the control as well as corresponding
AgNOj; treatments, while exposure to AgNO;5 at 50 and
75 uM concentrations resulted in an increase of PPX activity
(Table 3).

AgNP and AgNOj; had a similar impact on root APX ac-
tivity; treatments with lower concentrations (25, 50, and
75 uM) exhibited similar values as the control (Table 2), while
higher concentrations (100 and 500 uM) significantly de-
creased the APX activity. However, a decrease was somewhat
more pronounced in AgNP compared to AgNOj3 treatments.
In leaves, no significant changes in APX activity were mea-
sured after exposure to either AgNPs or AgNOj; applied at any
of the tested concentrations (Table 3).

In root tissue, AgNOj3 and particularly AgNP treatments in
general induced an increase in CAT activity especially after
exposure to 25, 50, 75, and 100 uM AgNPs and 25, 50, and
75 uM AgNOj; (Table 2). However, at 100 uM, higher CAT
activity was measured after exposure of plants to AgNPs than
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to AgNO;. In leaves, all of the applied AgNP concentrations
significantly decreased the CAT activity. On the contrary, the
effect of AgNOj; treatments on CAT activity was concentra-
tion dependent; lower concentrations of AgNO; (25 and
50 uM) had no significant impact on CAT activity, 75 uM
AgNOj significantly induced the CAT activity, while at 100
and 500 puM, reduced values were obtained compared to the
control (Table 3). At all of the applied concentrations, CAT
activity was higher in plants exposed to AgNO; than in those
exposed to AgNPs.

Microscopic study and in situ AgNP localization

Microscopy observations revealed that the 100 uM concen-
tration of both AgNP and AgNO; treatments induced the high
vacuolization of root cells compared to the control (Fig. S1;
Fig. 2a—), and due to large vacuoles, only nuclei could be
observed within the cells (Fig. 2b, ¢). Moreover, root cells of

Fig. 3 Localization of AgNPs, at the ultrastructural level, in the tobacco | 2
root cells from the 100 pM AgNP-treated plants. TEM images of silver
nanoparticles (a, b, d), bright field images (c, e), and energy-dispersive X-
ray spectrum (f). AgNPs silver nanoparticles indicated by arrows

AgNO;-treated plants were partly destroyed, while nuclei
were highly damaged (Fig. 2¢). After exposure to AgNP treat-
ment, the AgNPs were visible as black dots mainly near the
cell wall and inside the root cells (Fig. 3a). Therefore, root
cells were further examined by TEM-EDX. Figure 3 shows
that AgNPs were localized in the root cells and in the inter-
membrane space (Fig. 3b—e). The EDX scan confirmed that
the particles found in the TEM images contained silver (Fig.
3f), which proves the direct uptake of AgNPs and their accu-
mulation in the root cells.

Leaf semithin sections showed no significant changes in
the cell organization, except the difference in the leaf thick-
ness (Fig. S2). As for the leaf TEM study, changes were main-
ly revealed in the size of chloroplasts of both AgNP-treated

o i

Fig.2 Ultrastructure of root and leaf cells. Root cells from a control plant
(bar=2 pm), b plant treated with 100 uM AgNPs (bar=5 pum), and ¢
plant treated with 100 uM AgNO; (bar =5 um). Leaf cells from d control

@ Springer

plant (bar = 1 pum), e plant treated with 100 uM AgNPs (bar =2 um), and
f plant treated with 100 uM AgNOj; (bar=1 um). N nucleus, V vacuole,
Mt mitochondrion, Pt plastid
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and AgNOgs-treated plants; after exposure to AgNPs, chloro-
plasts were smaller (Fig. 2e) compared to chloroplasts in the
control cells (Fig. 2d), while those found in leaf cells of
AgNO;-treated plants were bigger (Fig. 2f) than the control
ones. After exposure to AgNPs, chloroplasts were somewhat
swollen and ruptured, although the thylakoid system in all of
the examined chloroplasts was well developed with no signif-
icant changes between treatments and control. In the leaf tis-
sue, AgNPs could not be detected.

Discussion

In our experiment, the Ag concentration in roots was 30 to 100
times higher than in leaf tissue after both AgNP and AgNO;
treatments, which indicates the predominant accumulation of
Ag in the roots of tobacco plants. Shtangeeva et al. (2011)
reported that after exposure of wheat plants to Ag,SO, and
AgNOs, Ag was mostly accumulated in the roots, while con-
centrations of Ag in leaves remained at the control level.
Moreover, it was shown that Arabidopsis roots treated with
AgNPs may bio-accumulate up to 10 times more Ag than
shoots (Geisler-Lee et al. 2014).

Studies performed on several plant species suggest that Ag
accumulation was often found to be much lower in treatments
with AgNPs compared to AgNO;5 (Yasur and Rani 2013;
Pokhrel and Dubey 2013; Vinkovi¢ et al. 2017; Cvjetko et al.
2017). However, in the current study, Ag accumulation in roots
and leaves of tobacco plants was equally efficient after both
AgNP and AgNO; treatments. Geisler-Lee et al. (2012) report-
ed that at lower corresponding concentrations of AgNPs and
AgNOs;, Ag accumulation in roots of Arabidopsis plants was
higher in AgNP treatments compared to those by AgNOs,
while at higher concentrations, AgNO; induced a similar Ag
uptake as AgNPs. Moreover, Qian et al. (2013) found higher
Ag uptake in leaves of Arabidopsis plants exposed to the
AgNPs compared to the values obtained after the treatment with
the same AgNOj; concentration. Nair and Chung (2014a) sug-
gested that the possible reason for high Ag accumulation in
AgNP-exposed plants might be the direct uptake of AgNPs
by plants or that the AgNPs could get oxidized on the root
surface as Ag*, which could enter into the root tissue directly
without dissolving in the solution. In our study, the direct AgNP
uptake by root cells was confirmed by TEM and EDX analysis,
although oxidation on the root surface cannot be excluded.

The high Ag concentration in the roots of AgNP-treated
and AgNOs-treated tobacco plants found in our study is in
good correlation with the results of microscopy. To be more
precise, the root tip cells were highly vacuolated after expo-
sure to either 100 uM AgNPs or 100 uM AgNO; compared to
the control, which indicates that vacuoles might be the prima-
ry storage for accumulated silver. High vacuolization of root
tip cells after AgNP and AgNO; treatments was also reported

@ Springer

for Eruca sativa (Vannini et al. 2014) and Lolium multiflorum
(Yin et al. 2011), although in these studies, the effects were
less severe in the root cells treated with AgNOs. In our study,
the ultrastructural analysis revealed black dots in the roots
cells and EDX scan confirmed that these particles contained
silver. In the studies of other authors, AgNPs were localized
inside the vacuoles of rice (Mazumdar and Ahmed 2011) and
Brassica campestris root cells (Mazumdar 2014) as well as in
the plasmodesmata, cell wall, and middle lamella of
Arabidopsis root cells (Geisler-Lee et al. 2012), which is in
good correlation with our results.

Metal-induced stress very often results with increased ROS
generation in plants (Balen etal. 2011; Tkalec et al. 2014), and
several studies have reported that AgNPs and AgNO; may
induce oxidative stress in plant cells (Jiang et al. 2014; Nair
and Chung 2014b; Barbasz et al. 2016). In the current study,
however, the exposure of tobacco plants to AgNPs and
AgNO; induced an increase of ROS formation in root tissue
only after exposure to 100 and 500 uM AgNO;, while no
changes were recorded after treatments with AgNPs.
Furthermore, none of the applied AgNP concentrations in-
duced a significant increase, either in MDA and protein car-
bonyl content or in tail DNA in tobacco plant roots. This is in
accordance with the low ROS levels obtained after AgNP
treatments, but is opposite to the results reported for wheat
cultivars (Barbasz et al. 2016), rice (Nair and Chung 2014b),
and Arabidopsis (Nair and Chung 2014a) exposed to AgNPs,
where increased lipid peroxidation and protein oxidation were
found. In our previous study, when the citrate-coated AgNPs
were applied for treatments of Allium cepa roots, significantly
higher MDA and protein carbonyl content as well as increase
in ROS was obtained after treatments with 50, 75, and
100 uM (Cvjetko et al. 2017). As for the DNA damage,
Vannini et al. (2014) found no changes at DNA level in wheat
seedlings exposed to AgNP, while Cvjetko et al. (2017) also
reported that treatments of A. cepa with citrate-coated AgNPs
did not increase DNA damage, which corroborates our find-
ings. Results of ROS formation and oxidative stress parame-
ters indicate that sensitivity to AgNPs is very much dependent
on the plant species. As for exposure to AgNOs, the majority
of the treatments induced significant increase in lipid peroxi-
dation, protein oxidation, and DNA damage in root tissue
compared to the control, which is in accordance with previ-
ously published results on toxicity of ionic Ag (Nair and
Chung 2014a; Cvjetko et al. 2017). Taking into consideration
that the root tissue exhibited similar Ag uptake after both
AgNP and AgNOs; treatments and that AgNP treatment did
not induce elevated values of the oxidative stress parameters,
it can be concluded that the Ag accumulated in root tissue after
AgNP treatments remained mainly in the form of nanoparti-
cles, which were of high stability and did not release ionic
silver after entering the cells, thus showing much less toxicity
compared to ionic Ag.
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In leaves, none of the applied AgNP concentrations in-
duced changes in ROS formation, MDA and protein carbonyl
content, or DNA damage. As for exposure to AgNOs, the
most prominent effect was observed in protein carbonyl con-
tent, which significantly increased at almost all of the treat-
ments, although the obtained values were much lower than in
root tissue for corresponding concentrations. Moreover, lipid
peroxidation and DNA damage occurred only at the two
highest applied concentrations (100 and 500 pM). Since the
Ag accumulation in leaves was many times lower than in roots
after both AgNP and AgNOj; treatments, the weaker effects
found in leaf tissue were somewhat expected, thus confirming
that the majority of the accumulated Ag remained in the root
cells and that only a small portion of Ag was translocated to
leaves. In several other studies, AgNO; was found to be more
phytotoxic than AgNPs. For example, Nair and Chung
(2014a) found increased ROS formation in AgNOs-treated
Arabidopsis seedlings compared to AgNP-treated ones, while
Barbasz et al. (2016) reported that lipid peroxidation was
higher in wheat callus exposed to AgNO; than AgNP
treatments.

In roots, exposure to AgNPs in general did not induce
significant changes in activity of SOD and PPX, while lower
AgNP concentrations induced higher CAT activity. This is in
good correlation with no measurable changes in oxidative
stress parameters, indicating that AgNPs in higher concentra-
tions induced mild oxidative stress, which could be efficiently
alleviated by antioxidant enzymes. Contrary, AgNO; treat-
ments resulted with elevated SOD, PPX, and CAT activity,
which in line with increased values of oxidative stress param-
eters imply severe oxidative stress. Moreover, SOD and CAT
activity after an initial increase at lower treatment concentra-
tions showed a decline. These results are in good correlation
with ROS content since the DHE test applied for ROS detec-
tion mostly measures formation of the superoxide radical (O
) (Cvjetko et al. 2017), which is neutralized by SOD. Hence,
at higher AgNOj; concentrations, insufficient SOD activity
resulted with increased ROS formation. Under unstressed
and mild stress conditions, the formation and removal of
ROS are in balance due to proper activity of antioxidant en-
zymes. However, when ROS formation is too high, the de-
fense system can be overwhelmed. When Arabidopsis plants
were exposed to severe salt stress, a significant decrease in
Cu-Zn-SOD activity was found, while exposure to mild salt
stress resulted in increases of Cu-Zn-SOD activities (Alscher
et al. 2002). Interestingly, for both types of treatments, APX
activity decreased after exposure to 100 and 500 uM AgNPs
and AgNOs, which was more pronounced in AgNP treatments
compared to AgNO;. Cvjetko et al. (2017) also reported a
decrease in APX as well as CAT activity in A. cepa roots
treated with AgNPs and AgNO;. On the other hand, increased
CAT activity was recorded in Spirodela polyrhiza exposed to
AgNPs (Jiang et al. 2014). Moreover, Hernandez-Viezcas

et al. (2011) found that ZnO-NPs increased CAT activity in
velvet mesquite roots, while APX activity remained at control
values. Qian et al. (2013) reported that AgNPs and AgNO;
induced the antioxidant capacity when Arabidopsis plants
were exposed to relatively weak stress, but it was
overwhelmed by continuous or high-intensity stress.
Changes in activities of antioxidant enzymes in tobacco plants
exposed to AgNP treatments might indicate stress imposed to
roots although other parameters of oxidative stress do not
imply so.

In leaf tissue, no changes were recorded in SOD and APX
activities after either AgNP or AgNO; treatments, which is in
line with the found unaltered ROS content. PPX activity in-
creased significantly after 50 and 75 uM AgNOs; treatments,
but 100 and 500 uM AgNP treatments significantly decreased
it. Although no AgNPs were detected in the leaves of exposed
plants, treatment with 100 uM AgNPs induced alterations in
leaf cell chloroplasts, mainly in size. The effects on chloro-
plast ultrastructure seemed to be a general stress response,
because they have been described previously under different
biotic and abiotic stress conditions (Hernandez et al. 1995;
Hernandez et al. 2006; Popov et al. 2016). Moreover, Jiang
et al. (2014) and Nhan et al. (2015) reported ultrastructural
changes in chloroplasts of Spirodela polyrhiza exposed to
AgNPs and cotton plants exposed to CeO,-NPs, respectively.
In our study, alterations in chloroplast ultrastructure correlated
with the imbalance of the chloroplast antioxidant system,
which was recorded as a strong decrease in PPX activity. In
a study by Diaz-Vivancos et al. (2008), alterations in the chlo-
roplast ultrastructure along with the decrease in the activities
of APX, PPX, and CAT in pea plants subdued to biotic stress
were recorded, although no changes in the oxidative stress
parameters were observed, which is similar to the results ob-
tained in our study. A decrease in PPX activity at higher AgNP
concentrations, after an initial increase at lower concentra-
tions, was recorded in leaves of Pelargonium plants (Hatami
and Ghorbanpour 2013), while reduced CAT activity was not-
ed in leaves of corn plants (Zhao et al. 2013) and green peas
(Mukherjee et al. 2014) exposed to ZnO-NPs. Interestingly,
although the antioxidant enzyme activities were not modified
or were even reduced, AgNPs did not induce any significant
oxidative stress in tobacco leaves, unlike AgNO;. Since the
silver concentration in leaves was similar in both treatments
and much lower than in roots, it is possible that some of the
changes observed in the leaves were just a consequence of the
stressful events that took place in the roots.

Conclusion
Ag accumulated predominantly in the roots after exposure to

both AgNPs and AgNO;. The direct AgNP uptake by root
cells was confirmed by TEM and EDX analyses. Root
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meristem cells became highly vacuolated, which indicates that
vacuoles might be the primary storage for accumulated silver.
AgNPs were less phytotoxic for tobacco plants than AgNO;3
as treatments with AgNOs, in general, induced oxidative
stress in both tissues.
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